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The shape of the van der Waals loop and universal critical
amplitude ratios
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USA
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Abstract. Assuming that a van der Waals loop for a fluid, ferromagnet, etc, can be defined, its
shape is analysed on the basis of universal critical amplitude ratios for three-dimensional Ising-
type systems. Selected estimates for these ratios are tabulated. Near criticality, the loop attains
a universal scaled form given, optimally, by a new parametricextended sine modelfor the bulk
asymptotic equation of state; but a (particular) low-order interpolating Padé approximant provides
a reasonable fit. Among other universal features, the reducedspinodal magnetization/density
and conjugate field are found to be(m̃s , h̃s ) ' (0.697,−0.513) in contrast to the van der
Waals values(0.577· · · ,−0.384· · ·): thus the spinodal lies appreciably closer to the binodal
(or coexistence curve) than predicted classically.

All classical, Landau, or mean-field equations of state for fluids, ferromagnets, etc, that
predict a first-order transition exhibit also a characteristic van der Waals (vdW) loop which
(a) extends through the full, equilibrium two-phase region,(b) represents an isothermal,
real analytic continuation of the equation of state through the coexistence curve or phase
boundary, and(c) approaches the simple cubic formh ∝ M[M2 −M2

0(T )] in the critical
region, t ≡ (T − Tc)/Tc → 0−: hereM denotes an appropriate order parameter, while
M0(T ) ≈ B|t |β is its spontaneous (or coexistence) value beneathTc andh is the conjugate
thermodynamic field. (For precise definitions here and below, see the appendix.) The
vdW loop playsno role for thermodynamic states, even if spatiallynonuniform, outside
the coexistence curve, i.e. with, asymptotically,M2 > M2

0(T ). By contrast, in all classical
theories of surface tension, interfaces, spinodal decomposition, etc (see, e.g. [1, 2]), the
presence and properties of the loop are crucial. And this is true also of more generallocal
functional theories[1, 3, 4] that allow for the observednonclassical values of the critical
exponentsα, β, γ, . . . . Accordingly, it is appropriate to consider theshapeprofile, h(M),
of a vdW loop more closely, especially, near criticality.

First, however, it must be stressed that the veryexistenceof a full van der Waals
loop is in doubt from the viewpoint of statistical mechanics. Thus, as regards point(a),
above, there exist exactly soluble microscopic models [5] in which, while an isotherm can
be analytically continued into the two-phase region, the real continuation doesnot extend
across to the other phase. More generally, for systems with normal interactions of finite
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range, the presence ofessential singularitieson the phase-boundary [5–8] precludes(b),
i.e. forbidsany definition via analytic continuation.

While recognizing the power of these objections, we will adopt here the well sanctioned
‘traditional thermodynamic picture’ and so accept points(a) and(b); but we aim to improve
upon (c). Indeed, the cubic form ofh(M) is inextricably linked to the classical critical
exponent valuesβ = 1

2, γ = 1, δ = 3, etc. Naturally, we hope that, in some sense, we
are not merely asking: ‘How many angels can dance on the head of a pin?’. In any event,
we will provide reasonable expressions for loop profilesh(M) consistent with nonclassical
behaviour thereby providing a satisfactory basis for better phenomenological theories of
surface tensions near critical endpoints [4, 9–11], of critical adsorption [12, 13], and of
compositional profiles between walls with competing boundary conditions [13, 14], etc.

To represent our results for the vdW loops, scaled versions ofM andh are desirable.
Accordingly, forT < Tc, we introduce

m̃ ≡ M/M0(T ) ≈ M/B|t |β and h̃ ≡ h/[M0(T )/χ0(T
+)] ≈ C+h/B|t |β+γ . (1)

The definition ofm̃ is natural, the coexistence curve being specified simply bym̃ = ±1.
To defineh̃ we have invoked the zero-field susceptibility,χ0 = (∂M/∂h)h→0, evaluated at
the complementary temperature,T + = (1+ |t |)Tc, abovecriticality. This varies (see the
appendix) asC+/|t |γ and is appropriate for scaling since the susceptibility and its amplitude
are both more fundamental and more accessible to experimental observation, to simulation
[15, 16], to numerical estimation [17–21], and to RG analysis, etc [21–23], aboveTc than
belowTc. (Note that the references cited here are meant only to be representative of recent
work and of relevance to table 1.) As a result of (1), slopes on an(m̃, h̃) plot, as in figure 1,
are measured on the scale 1/χ0(T

+). By the same token, an(m̃, h̃) plot aboveTc (with M0

evaluated atT − = (1− |t |)Tc) has a slope of unity at the origin.

Figure 1. Scaled vdW loops predicted by low-order Padé approximants, [L/M], to u(m̃2) in (2)
utilizing the universal amplitude ratiosU2, R3 andR4: see table 1. The broken vertical lines at
m̃ ≡ M/M0(T ) = ±1 indicate the limits of the two-phase region. From the top downwards on
the left plots are: dotted, [0/0]; chain [0/1]; full, [0/2]; broken, [1/0]; double chain, [2/0]; and
triple chain, [1/1]. The open circles locate the classically predicted spinodal points: these donot
lie on the cubic approximant [0/0] because of the incorrect classical valueU2 ≡ C+/C− = 2.
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Table 1. Universal critical amplitude ratios. The amplitudes,A±, B, etc, are defined in the
appendix. The uncertainties indicated for the selected estimates for the(d = 3)-dimensional
Ising (or n = 1) universality class refer to the last decimal place quoted. The scaling and
hyperscaling exponent relationsγ = (2− η)ν, 2− α = 2β + γ = β(δ + 1) = β + 1 = dν

andµ = (d − 1)ν, are assumed and the valuesγ = 1.2392± 3 andν = 0.6308± 12 have
been accepted (although, within the quoted uncertainties, most ratios are not sensitive to these
exponent estimates). Note that therenormalized coupling constants, g∗+ andg∗−, can be derived
from R4 andR3, etc: see [18, 19] and [g] below.

U0 ≡ A+/A− 0.523± 9 [a]
U2 ≡ C+/C− 4.95± 15 [a,b]
U4 ≡ C+4 /C−4 −9.0± 3 [c,g]
Rc ≡ αA+C+/B2 0.0581± 10 [a]
R0 ≡ (C+4 )2/C+C+6 0.1275± 3 [c]
R3 ≡ −C−3 B/(C−)2 6.44± 30 [c,e,g]
R4 ≡ C−4 B2/(C−)3 107± 13 [c,g]
R+4 ≡ C+4 B2/(C+)3 7.94± 12 [e,f]
Q1 ≡ Ccδ/(Bδ−1C+)1/δ 0.91± 25 [d,e]
Q−δ1 ≡ DC+Bδ−1 1.57± 23 [f]

Uξ ≡ ξ+1,0/ξ−1,0 1.96± 1 [a]
Q2 ≡ (ξc1,0/ξ+1,0)2−η(C+/Cc) 1.17± 2 [d]
Q+ ≡ αA+(ξ+1,0)d 0.0188± 15 [a]
Qc ≡ Q+/Rc ≡ (ξ+1,0)dB2/C+ 0.3236 ± 6 [e,f]
Q− ≡ αA−(ξ−1,0)d 0.00477 ± 2 [e]
Q+ξ ≡ ξ+0 /ξ+1,0 1.0001 [e]
Q−ξ ≡ ξ−0 /ξ−1,0 1.037± 3 [e,b]
Qc
ξ ≡ ξc0/ξc1,0 1.007± 3 [e]

S− ≡ K(ξ−1,0)d−1 0.098± 2 [d,e]
S+ ≡ K(ξ+1,0)d−1 0.377± 11 [e]
S0 ≡ KC+/B2ξ+1,0 1.17± 6 [e,f]

[a] See [17]. [b] Caselle and Hasenbusch [15] in a carefully analysed Monte Carlo study,
adopted essentially the same values ofγ and ν and concludedU2 ≡ C+/C− = 4.75± 6,
Uξ ≡ ξ+1,0/ξ

−
1,0 = 1.95± 4, andQ−ξ ≡ ξ−0 /ξ

−
1,0 = 1.017± 14 (where their quoted statistical

errors have been doubled): only the ratioU2 can be considered significantly lower than listed
here. [c] See [18]. [d] See [19]. [e] See Zinn [11, chapter 2]; but note that, as regardsQ1 and
R3, the work of Guida and Zinn-Justin [22] is now taken into account. Likewise, forS−, S+
andS0, the surface tension amplitudeK has been revised using Hasenbusch and Pinn [16]. [f]
Derived by combining primary estimates listed above in the table. [g] The ratiosU4, R3 and
R4 enter into expressions for the renormalized coupling constants via
g∗+ ≡ −C+4 /(C+)2(ξ+1,0)d = −R4U4/U

3
3Qc g∗− = (3R2

3 − R4)U
3
ξ /U2Qc.

The central estimates listed yieldg∗+ ' 24.54 compared with 24.45± 15 as estimated in [18].
However, the more recent analysis of Guida and Zinn-Justin [22] leads to 23.70± 10 which
is supported by studies of Butera and Comi and of Pelissetto and Vicari (the latter obtaining
23.55± 24). If such lower estimates hold up, the central values ofU4 and R4 may need
adjustment (although probably remaining within the ranges quoted). Owing to cancellations
between large terms,g∗− ' 85 [11, 18] is difficult to estimate: future more reliable estimates
should yield refined values also forR3.

In terms ofm̃ andh̃ one expects the vdW loop (and associated stable isotherms) to take
the asymptotic scaling form

h̃ = m̃(m̃2− 1)u(m̃2) (t → 0−) (2)

whereu(y) is a universal function that we seek. Classically one then hasu ≡ 1; more
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generally, for a properly shaped loop, one needsu(0), u(1) > 0. Now, by employing the
universal amplitude ratios defined in table 1 (in terms of the critical amplitudes given in the
appendix), the order parameter near criticality may be expanded in powers ofh̃→ 0± as

m̃ = ±1+ (h̃/U2)∓ 1
2R3(h̃/U2)

2+ 1
6R4(h̃/U2)

3∓ · · · . (3)

Obviously, the analytic continuation of these series truncated at some available order will
not produce a sensible vdW loop inside the two-phase region. Instead, let us construct Padé
approximants, [L/M], to u(y) that, on inversion of (2), match the expansion (3) to desired
order. The simplest approximant is [0/0] = 1

2U2 ≡ 1
2(C

+/C−); others are readily found
(see [11], table 3.2). The resulting predictions for the vdW loop are shown in figure 1
where the values ofU2, R3, andR4 in table 1 have been used. Many of the loops are
quite anomalous, with unexpected points of inflection, etc. A highest order approximant,
matching all terms displayed in (3), is

u[0/2](1+ z) = U2/2{1− 1
4(R3− 3)z− 1

48[3(1+ R3)
2− 2R4]z2}. (4)

Since the two other approximants of this order, [1/1] and [2/0], yield loops with extra zeros
(see figure 1) they may be regarded as ‘defective’. Thus the estimate (4) foru(m̃2) is to be
favoured; but we can do better.

To deal effectively with nonclassical equations of state, parametric representations [24–
27] are essential. Ideally [4], the vdW loop would follow simply by analytic continuation
of the parametric equations into the two-phase regions. However, as noted previously [4],
the well known linear model [24, 25] fails to generate a real, complete vdW loop. The
same is true of thecubic model [27, 11] and its extensions [11, 28]. To overcome this

Figure 2. Estimates for the scaled vdW loop: (a) the full curve, based on the extended sine
model, is preferred. (b) The dotted curve, which approximates (a) reasonably well, is the [0/2]
approximant, also shown in figure 1: see (4). The (c) broken and (d) chain curves represent
the extended cubic model and the linear model (withb = 1.25) respectively, both interpolated
to orderN = 2. The open circles again locate the spinodal points predicted classically.
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Table 2. Estimates for universal vdW loop parameters.For definitions and explanations, see
text. The predictions of the extended sine model (in the last row) are preferred. The uncertainties
quoted refer to the last decimal place.

m̃s h̃s 1− (A∗/A−) C−/C∗

Classical vdW results
1√
3
' 0.577 − 2

√
3

9 ' −0.385 1 − 1
2

Pad́e approximants [L/M]
[0/0] 1√

3
−0.953± 29 0.984± 64 − 1

2

[1/0] 0.749± 15 −0.507± 42 0.420± 76 −0.070± 38
[0/1] 0.6537 ± 5 −0.621± 37 0.637± 60 −0.269± 11
[2/0] 0.779+49

−201 −0.471+75
−205 0.29± 42 0.060± 44

[1/1] 0.783± 90 −0.467± 12 0.25+38
−210 0.12+560

−140
[0/2] 0.719± 40 −0.521± 70 0.506+125

−87 −0.175+36
−62

Interpolated linear model (b = 1.250)
N = 1 0.700 249 −0.411 925 0.466 739 −0.168 487
N = 2 0.736 378 −0.404 349 0.455 206 −0.156 315

Interpolated extended cubic model
N = 1 0.713± 3 −0.461± 2 0.477± 5 −0.185± 2
N = 2 0.746± 5 −0.454± 2 0.462± 3 −0.171± 3

Extended sine model
0.697± 2 −0.513± 20 0.514± 8 −0.205± 3

difficulty, Fisher and Upton [4] proposed interpolation through the two-phase region (using
a low-order polynomial in a complementary parametric angle,θ ) while matching the value
of M and the firstN derivatives,(∂kM/∂hk), on the coexistence curve.

The chain and broken curves in figure 2 show the resultingN = 2 interpolations [11]
for the linear model and (an extended) cubic model, respectively, when these are fitted (as
best possible) to the data of table 1 [11, 28]. Note that the dotted curve represents the
[0/2] approximant (4), which, in fact, also fits(∂3M/∂h3). This interpolation scheme is
reasonable but ratherad hoc. Furthermore, the(k > N)th derivatives are discontinuous at
the coexistence curve and the results must fail at some point whenN is increased since
they will approach the (inadequate) analytic continuation.

As an attractive alternative, Fisher and Upton proposed a trigonometric orsine model
[4, 26] which, by construction, always provides a complete, real analytic continuation
through the two-phase region. Such representations have now been studied [11, 28]. In order
to fit the data in table 1 satisfactorily it proves both necessary and beneficial to parametrize
the singular part of the reduced canonical free energy,A(T ,M), directly (rather than the
equation of state, as is traditional [24–27]). In brief, we write

t = rk(θ) M = rβm(θ) h = rβδl(θ) As(T ,M) = r2−αn(θ) (5)

where, omitting regular terms,As(T ,M) =
∫ M

h(M ′; T ) dM ′. Then we adopt [4, 11, 28]

k(θ) = 1+ k1[cos(qθ)− 1] m(θ) = m0 sin(qθ)/q n(θ) =
4∑

j=0

njk
j (θ) (6)

for |θ | 6 θ0 = π/q, in which m0 and n0 serve as unimportant metrical factors while
k1 ≡ 2b2/q2 > 0, q, andn1 to n4 constitute six parameters. These may be adjusted to
provide good fits [11, 28] to the eight independent universal thermodynamic ratios,U0 to
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Q1, listed in table 1. (The remaining, correlation length and surface tension, ratios are
included for reference since they are also required for applications of the nonclassical local
functional theories [4, 10, 13].)

By these means the full curve in figure 2 has been calculated [11, 28]. Since it meets
the original requirements(a) and(b), and fits all currently available critical data, we regard
it as the optimal prediction for the scaled van der Waals loop. Evidently, it is not too badly
approximated numerically by the [0/2] approximant (4). However, to be more quantitative,
we present in table 2 a list of universal shape parameters characterizing the loop. These
are: first, the values,±m̃s and±h̃s , of m̃ and h̃ on the spinodals; then, theslope ratio,
C−/C∗, where the ‘unstable (negative) susceptibility’,χ∗ ≡ (∂M/∂h)M→0 belowTc varies
asC∗/|t |γ , and, last, thescaled free energy barrier, 1−(A∗/A−), which represents the height
of the free energy maximum atM = 0 belowTc relative to the minima atM = ±M0(T ).
This parameter thus measures the area under one lobe of the vdW loop and follows, more
concretely, fromC∗(T ), theM = 0 specific heat belowTc, which varies asA∗/|t |α.

It is clear from table 2, as from the figures, that the shape of any plausible vdW loop
for a three-dimensional system near criticality, differs significantly from the classical form.
In particular, the spinodal should be further out (i.e. closer to the binodal or coexistence
curve) and the ‘size’ of the loop, as measured by the area under its lobes and the central
slope, must be smaller by a factor of about 2 or more. In addition to the applications already
mentioned [3, 4, 10, 12, 13], these results may be useful in studies of spinodal decomposition
near criticality and in other problems where interface profiles need to be modelled.

Informative communications from M Hasenbusch, K Pinn, J Zinn-Justin, P Butera, M Comi,
A Pelissetto, A I Sokolov and D P Landau, have been appreciated. The authors are grateful
for the inspiration provided by Ben Widom and by earlier work of Paul J Upton, and for the
support of the National Science Foundation (through grants CHE 93-11729 and 96-14495).

Appendix. Definitions of critical amplitudes

We define the reduced free energy density (or pressure) for a system of volumeV as a
function of thermodynamic fields, T andh, via f = −F/V kBT = V −1 lnZ(T , h) where
the partition function isZ = Tr{exp(H)} with a reduced Hamiltonian of the form

H = −H/kBT = H0+ h
∫
M(r) dr (A1)

where
∫

dr is replaced by
∑
R v0 in a lattice system with cell volumev0, theorder parameter

density, M(r), being then defined only at lattice sites,R. In magnetic systemsM(r) may
be the spin density and one then hash = µ0H/kBT , whereH is the magnetic field andµ0

is a unit magnetic moment; for fluidsM(r) may be a number (or mass) density deviation
in which case one hash = µ/kBT (or µ/m0kBT ), whereµ is the chemical potential
(or a chemical potential difference, whilem0 sets a suitable molecular mass scale). Other
thermodynamic fields, such as an overall pressure, are understood to be held constant.

To describe critical behaviour, we setT = Tc(1+ t) and supposehc = 0 andMc = 0:
thus for a fluid, one may takeM = ρ− ρc, whereρ is the number or mass density, etc. To
specify critical amplitudes on the ‘critical isochore’M = Mc aboveTc, or at coexistence
below Tc (assuming asymptotic symmetry underM ⇔ −M), we write the reduced specific
heat and spontaneous order (or coexistence curve) as

C(T ) = (∂2f /∂t2) ≈ A±/|t |α M0(T ) = (∂f /∂h)0+ ≈ B|t |β (A2)
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when t → 0±, and the susceptibilities as

χ(T ) = (∂M/∂h)0 ≈ C±/|t |γ χk(T ) = (∂kf /∂hk)0 ≈ C±k /|t |γ+(k−2)1 (A3)

where scaling for field derivatives(k > 2) has been assumed as well as equality of exponents
for t ≷ 0. The second-moment and true correlation lengths vary as

ξ1(T ) ≈ ξ±1,0/|t |ν ξ∞(T ) ≈ ξ±0 /|t |ν (A4)

when t → 0±. (In systems with lattice spacinga we write ξ+1,0 = f +1 a, etc [17].) For the
interfacial tension,6(T ), between coexisting phases, amplitudes are defined by

6(T ) ≈ K|t |µ when t → 0− and K ≡ K/kBTc. (A5)

Finally, on thecritical isotherm, T = Tc, we takeγc = 1− (1/δ) and

h ≈ ±D|M|δ χ(h) ≈ Cc/|h|γc ξ1(h) ≈ ξc1,0/|h|νc ξ∞(h) ≈ ξc0/|h|νc (A6)

so thatCc = 1/δD1/δ, while scaling dictatesδ = 1/β, γc = γ /1, νc = ν/1, 1 = β + γ ,
α + 2β + γ = 2, etc. Hyperscaling, which is assumed in the last two sections of table 1,
givesµ = (d − 1)ν and 2− α = dν, etc.
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